首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2381篇
  免费   443篇
  国内免费   70篇
化学   2595篇
晶体学   11篇
力学   14篇
综合类   7篇
数学   65篇
物理学   202篇
  2023年   25篇
  2022年   37篇
  2021年   115篇
  2020年   151篇
  2019年   105篇
  2018年   80篇
  2017年   66篇
  2016年   153篇
  2015年   153篇
  2014年   174篇
  2013年   216篇
  2012年   168篇
  2011年   176篇
  2010年   137篇
  2009年   154篇
  2008年   153篇
  2007年   138篇
  2006年   133篇
  2005年   109篇
  2004年   81篇
  2003年   90篇
  2002年   25篇
  2001年   23篇
  2000年   29篇
  1999年   12篇
  1998年   24篇
  1997年   28篇
  1996年   13篇
  1995年   24篇
  1994年   18篇
  1993年   11篇
  1992年   9篇
  1991年   7篇
  1990年   2篇
  1989年   7篇
  1988年   11篇
  1987年   7篇
  1986年   5篇
  1985年   10篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有2894条查询结果,搜索用时 15 毫秒
11.
Novel 6-alkyl- and 6-alkenyl-3-fluoro-2-pyridinaldoximes have been synthesised by using a mild and efficient chemoselective hydrogenation of 6-alkynyl-3-fluoro-2-pyridinaldoxime scaffolds, without altering the reducible, unprotected, sensitive oxime functionality and the C−F bond. These novel 6-alkyl-3-fluoro-2-pyridinaldoximes may find medicinal application as antidotes to organophosphate poisoning. Indeed, one low-molecular-weight compound exhibited increased affinity for sarin-inhibited acetylcholinesterase (hAChE) and greater reactivation efficiency or resurrection for sarin-inhibited hAChE, compared with those of 2-pyridinaldoxime (2-PAM) and 1-({[4-(aminocarbonyl)pyridinio]methoxy}methyl)-2-[(hydroxyimino)methyl]pyridinium chloride (HI-6), two pyridinium salts currently used as antidote by several countries. In addition, the uncharged 3-fluorinated bifunctional hybrid showed increased in vitro blood–brain barrier permeability compared with those of 2-PAM, HI-6 and obidoxime. These promising features of novel low-molecular-weight alkylfluoropyridinaldoxime open up a new era for the design, synthesis and discovery of central non-quaternary broad spectrum reactivators for organophosphate-inhibited cholinesterases.  相似文献   
12.
《Mendeleev Communications》2020,30(4):424-426
  1. Download : Download high-res image (148KB)
  2. Download : Download full-size image
  相似文献   
13.
A range of oxobis(phenyl-1,3-butanedione) vanadium(IV) complexes have been successfully synthesized from cheap starting materials and a simple and solvent-free one-pot dry-melt reaction. This direct, straightforward, fast and alternative approach to inorganic synthesis has the potential for a wide range of applications. Analytical studies confirm their successful synthesis, purity and solid-state coordination, and we report the use of such complexes as potential drug candidates for the treatment of cancer. After a 24 hour incubation of A549 lung carcinoma cells with the compounds, they reveal cytotoxicity values elevenfold greater than cisplatin and remain non-toxic towards normal cell types. Additionally, the complexes are stable over a range of physiological pH values and show the potential for interactions with bovine serum albumin.  相似文献   
14.
Hydrogenation of acetophenone over nano‐Cu/SiO2 catalysts was investigated. The catalysts, prepared by a liquid precipitation method using various precipitating agents, were characterized using low‐temperature nitrogen adsorption, X‐ray diffraction, temperature‐programmed desorption of ammonia, hydrogen temperature‐programmed reduction, transmission electron microscopy and X‐ray photoelectron spectroscopy. It was found that the catalysts prepared by a homogeneous precipitation method had better activity and stability than those prepared by a co‐precipitation method. The catalyst prepared using urea as precipitating agent had well‐dispersed copper species, high surface area and abundant pore structure. The catalytic performance and mechanism of the Cu/SiO2 catalysts were further studied. It was found that the activity and stability of the catalysts could be improved by adjusting the proportion of Cu+/(Cu+ + Cu0). The sample prepared using urea as precipitating agent presented higher activity and selectivity. Also, the catalyst prepared using urea maintained a high catalytic performance while being continuously used for 150 h under the optimal reaction conditions.  相似文献   
15.
Nonspecific high‐energy radiation for treatment of metastatic ovarian cancer is limited by damage to healthy organs, which can be mitigated by the use of radiosensitizers and image‐guided radiotherapy. Gold (Au) and tantalum oxide (TaOx) nanoparticles (NPs), by virtue of their high atomic numbers, find utility in the design of bimetallic NP systems capable of high‐contrast computed tomography (CT) imaging as well as a potential radiosensitizing effect. These two radio‐dense metals are integrated into dendritic mesoporous silica NPs (dMSNs) with radial porous channels for high surface‐area loading of therapeutic agents. This approach results in stable, monodispersed dMSNs with a uniform distribution of Au on the surface and TaOx in the core that exhibits CT attenuation up to seven times greater than iodine or monometallic dMSNs without either TaOx or Au. Tumor targeting is assessed in a metastatic ovarian cancer mouse model. Ex vivo micro‐CT imaging of collected tumors shows that these NPs not only accumulate at tumor sites but also penetrate inside tumor tissues. This study demonstrates that after intraperitoneal administration, rationally designed bimetallic NPs can simultaneously serve as targeted contrast agents for imaging tumors and to enhance radiation therapy in metastatic ovarian cancer.  相似文献   
16.
In this study, manganese tellurite (MnTeO3) nanoparticles are developed as theranostic agents for magnetic resonance imaging (MRI)-guided photothermal therapy of tumor. MnTeO3 nanoparticles are synthesized via a simple one-step method. The as-synthesized MnTeO3 nanoparticles with uniform size show good biocompatibility. In particular, MnTeO3 nanoparticles exhibit a high photothermal conversion efficiency (η = 26.3%), which is higher than that of gold nanorods. Moreover, MnTeO3 nanoparticles also have high MRI performance. The longitudinal relaxivity (r1) value of MnTeO3 nanoparticles is determined to be 8.08 ± 0.2 mm −1 s−1, which is higher than that of clinically approved T1-contrast agents Gd-DTPA (4.49 ± 0.1 mm −1 s−1). The subsequent MnTeO3 nanoparticles-mediated photothermal therapy displays a highly efficient ablation of tumor cells both in vitro and in vivo with negligible toxicity. It is demonstrated that MnTeO3 nanoparticles can serve as promising theranostic agents with great potentials for MRI-guided photothermal therapy.  相似文献   
17.
18.
19.
Herein, a bilayer cylindrical conduit (P‐CA) is presented consisting of electrospun polycaprolactone (PCL) nanofibers and sodium alginate hydrogel covalently cross‐linked with N,N′‐disuccinimidyl carbonate (DSC). The bilayer P‐CA conduit is developed by combining the electrospinning and outer–inner layer methods. Using DSC, as a covalent crosslinker, increases the degradation time of the sodium alginate hydrogel up to 2 months. The swelling ratio of the hydrogel is also 503% during the first 8 h. The DSC cross‐linked sodium alginate in the inner layer of the conduit promotes the adhesion and proliferation of nerve cells, while the electrospun PCL nanofibers in the outer layer provide maximum tensile strength of the conduit during surgery. P‐CA conduit promotes the migration of Schwann cells along the axon in a rat model based on functional and histological evidences. In conclusion, P‐CA conduit will be a promising construct for repairing sciatic nerves in a rat model.  相似文献   
20.
The nervous system is a significant part of the human body, and peripheral nerve injury caused by trauma can cause various functional disorders. When the broken end defect is large and cannot be repaired by direct suture, small gap sutures of nerve conduits can effectively replace nerve transplantation and avoid the side effect of donor area disorders. There are many choices for nerve conduits, and natural materials and synthetic polymers have their advantages. Among them, the nerve scaffold should meet the requirements of good degradability, biocompatibility, promoting axon growth, supporting axon expansion and regeneration, and higher cell adhesion. Polymer biological scaffolds can change some shortcomings of raw materials by using electrospinning filling technology and surface modification technology to make them more suitable for nerve regeneration. Therefore, polymer scaffolds have a substantial prospect in the field of biomedicine in future. This paper reviews the application of nerve conduits in the field of repairing peripheral nerve injury, and we discuss the latest progress of materials and fabrication techniques of these polymer scaffolds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号